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We explore in detail the creation of stable localized structures in the form of localized energy distributions
that arise from general initial conditions in the Peyrard-Bishop �PB� model. By means of a method based on the
inverse scattering transform we study the solutions of PB model equations obtained in the form of planar waves
whose amplitudes are described by the nonlinear Schrödinger equation �NLS�. For localized initial conditions
different from the pure N-soliton shape, we have obtained analytical results that predict and control the number,
amplitude, and velocity of the NLS solitary waves. To verify the validity of these results we have carried out
numerical simulations of the PB model with the use of realistic values of parameters and the initial conditions
in the form of planar waves whose modulated amplitudes are given by the examples studied in the NLS. In the
simulations we have found that N localized structures arise in agreement with the prediction of the analytical
results obtained in the NLS.
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I. INTRODUCTION

During the past decades the study of DNA has been an
active and priority focus in research. Particularly, the nonlin-
ear field of science pays special attention to the processes
that take place at the base pair scale �1�. Many of the models,
such as those proposed by Englander et al. �2� and by Pey-
rard and Bishop �PB� �3�; have achieved a remarkable suc-
cess in qualitative and, sometimes, quantitative description
of morphofunctional phenomena previously observed in
DNA experimentally �see, e.g., �4��.

Most of the studies fulfilled in the framework of the
above-mentioned applied theoretical models refer to the
DNA melting and the formation of bubbles and localized
structures. These bubbles play a vital role in DNA processes
such as replication, recombination, and reparation, or in the
DNA transcription to several types of RNA including those
involved in the protein synthesis. Among the processes that
have been described using bubbles and solitary waves one
can find the following: the binding of specific enzymes to
DNA �e.g., DNA polymerases, recombinases, helicases, or
RNA polymerases� and the thermal evolution of enzyme-
created bubbles �5�; the displacement of a bubble from the
promoter to the coding regions �6–14�; the process of energy
collection in the active regions under the enzyme action
�15–20�; the openings of bubbles in the start sites of tran-
scription �21–24�.

The use of localized bubblelike structures in explaining
these phenomena sets the problem of their creation and sta-
bility. In the past years it was found by many investigators
that this is a rather complicated and substantial problem it-
self. In the framework of the PB model, Daumont and co-

workers �25,26� have shown that the discreteness of the sys-
tem causes the instability of the extended solutions. They
tend to self-modulate evolving to localized solitonlike modes
that interact nonelastically and grow the largest ones at the
expense of the smallest �27�. It gives a possible path to the
collecting of energy. Thermal fluctuations, which exist in the
molecule due to the physiological temperature, are shown to
be a pathway to energy localization and formation of local-
ized structures �26,28–30�. On the other hand, it has recently
been shown by Kalosakas et al. how a combination of these
thermal fluctuations, sequence specificity, and nonlinearity
induce large and slow bubbles in the chain that coincide with
the localization of start sites of transcription �21–24�. Within
the Englander model and with the use of random initial con-
ditions, Cuenda and Sánchez �8� have obtained localized
structures disposed in the transcription starting points em-
ploying the same sequence that Kalosakas et al. used. Fi-
nally, the curvature and twisting of molecular strands have
been proposed to be responsible for a mechanism of bubble
generation �31�. As one can see, the creation of localized
structures in DNA models is a quite complicated problem in
which the nonlinearity, discreteness, fluctuations, global dy-
namics of the molecule, heterogeneity of the sequence, and
peculiarities of the initial conditions play an essential role.

In this work we aim to contribute a step in the above-
described direction studying the creation process of soliton-
like structures from localized initial conditions. In the Pey-
rard and Bishop model �3� and in the helicoidal model
proposed by Barbi �32�, using the multiple scale expansion
�MSE� technique �33� and its generalization for vectorial
systems �34�, respectively, it is possible to obtain the analyti-
cal expression for approximate solutions in the form of
modulated plane waves called breathers. The amplitude of
these solutions is governed by the NLS equation. If the initial
amplitude corresponds to the 1-soliton of NLS, planar wave
with localized amplitude emerges. This solitary wave has
been proposed as a possible precursor of the transcription
process by means of trapping this breather in extended re-
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gions of DNA where the coupling constant is weaker �15�.
Our objective is to show that these kinds of solutions do not
appear only in cases when an appropriate pure soliton initial
condition for the amplitude is introduced in the system.
Given an initial condition in a form of a modulated wave, we
use a powerful method based on the inverse scattering trans-
form �IST� �35�, that has been used successfully in solving
different mathematical and physical problems �36–42�, to
study and control the conditions of formation, the number
and properties of localized structures which can arise from
an initial condition significantly different from the solitary
wave discussed above. Subsequently, we introduce these ini-
tial conditions into the PB model with realistic values of
parameters �43� and perform direct numerical simulations
which demonstrates an excellent agreement between our nu-
merical results and analytical predictions.

The paper structure is as follows. In Sec. II we introduce
the general PB-like DNA model. In Sec. III we sketch the
MSE technique that allows us to obtain the equation that
governs the amplitude of planar waves in the form of NLS.
In Sec. IV we present, using the inverse scattering transform
formalism for NLS, general conditions of the existence of N
solitonlike solutions. The latter means the existence of planar
waves with localized modulated amplitude in the PB model.
There we also give some examples of nonsoliton initial am-
plitudes, find out the conditions under which these ampli-
tudes evolve towards N localized robust structures, and
check these results by numerical simulations of NLS. In Sec.
V, we study the dynamics of these solutions in the PB model
with DNA parameters by means of direct numerical simula-
tions, using the modulated planar waves, whose amplitudes
are described in the examples discussed above, as initial con-
ditions. We show the creation and evolution of solitary
waves which are found to be in excellent agreement with
analytical predictions and compare the time and space scales
of these solutions with the typical ones in the biological pro-
cesses under our study. Finally, Sec. VI summarizes our main
results and implications.

II. PB MODEL

The difference between DNA and other biopolymers is
the storage of genetic information that allows the cell ma-
chinery to build various types of RNAs and, on the next step,
proteins. The DNA bases form the code that specifies the
RNA properties and the protein composition. The process of
reading the DNA code, called transcription �44�, involves
large amplitude nonlinear motions of the bases. This fact has
focused the attention of physicists in the description, focused
on the motion of the bases, of the molecule internal dynam-
ics. The movement of the bases can be divided into torsional,
longitudinal, and transversal displacements �6�. These move-
ments are not independent of each other; however, the ex-
perimental results show that the time scale of the transversal
movements is two or three times smaller than the others �45�.
Thus, one can apply the adiabatic approximation �46� and
separate the transversal dynamics from others.

The transversal dynamics can be studied by means of the
PB model �3�. It is a one-dimensional model that describes

the relative distance between each pair of complementary
bases. In spite of the simplicity of the PB model, it can
provide a good qualitative and quantitative description of the
denaturalization of the molecule �4,43�. The Hamiltonian
function of this model can be written as

H = �
n

1

2
m�dUn

dT
�2

+
1

2
K̃�Un − Un−1�2 + Ṽ�Un� . �1�

Here Un denotes the relative distance between bases divided

by �2, m is the base mass, K̃ is the rigidity of the harmonic
potential of interaction between two bases of the same chain,

and Ṽ�Un� is the potential of interaction between opposite
bases representing the hydrogen bonds. For the PB model,

Ṽ�Un� is chosen as follows Ṽ�Un�=D�exp�−dUn�−1�2.
The evolution equations are

m
d2Un

dT2 = K̃�Un+1 + Un−1 − 2Un� − �0
2 dV

dUn
, �2�

where Ṽ=�0V, and V is dimensionless. If we make the
change of variables

un = bUn, t =��0b2

m
, K =

K̃

�0b2 , �3�

where �0=D and b=d for the PB model, the evolution
equations become

ün = K�un+1 + un−1 − 2un� −
dV�un�

dun
. �4�

They form a system of nonlinear ODEs which cannot be
solved exactly. In spite of this fact, there are techniques
�19,20,33,34,47,48� that allow us to construct approximate
solutions of �4�, find and study localized solutions.

III. SMALL AMPLITUDE MODULATED WAVES
SOLUTIONS. NLS EQUATION

Following the ideas of Remoissenet �33�, we will look for
small solutions around the minimum of the potential V�u0�.
These solutions are of the form of a modulated amplitude
carrier wave

un�t� = �	F1�t�ei�n + ��F0�t� + F2�t�e2i�n� + c.c.
 , �5�

where �n=qna− � t, a being the distance between bases. The
frequency and the wave vector are related by

�2 = ��0��
2 + 4K sin2�qa

2
� . �6�

By substituting �5� in �4� we obtain
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�F̈1,n − 2i�Ḟ1,n − �2F1,n�ei�n

+ �F̈0,n + ��F̈2,n − 4i�Ḟ2,n − 4�2F2,n�e2i�n

= K�F1,n+1eika + F1,n−1e−ika − 2F1,n�ei�n

+ �K�F0,n+1 + F0,n−1 − 2F0,n�

+ �K�F2,n+1e2ika + F2,n−1e−2ika − 2F2,n�e2i�n − ��0�
2�

��F1,nei�n + �F0,n + �F2,ne2i�n

+ ���F1,n
2 e2i�n + 2F1,nF1,n

* �

+ 2�2��F1,nF0,n + F1,n
* F2,n�ei�n + 3�2�F1,n

2 F1,n
* ei�n� ,

�7�

where

f = � �2V

�un
2�

u0

, g = �1

2

�3V

�un
3�

u0

, h = � 1

3!

�4V

�un
4�

u0

,

��0��
2 = f , � =

g

f
, � =

h

f
. �8�

Now we suppose that Fj,n varies slowly in space and time
in comparison with the carrier wave. So, if we define

X = �na, T = �t , �9�

we can write Fj =Fj�X ,T�, that is called the semidiscrete ap-
proximation �33� in which the phase is treated exactly, and
only the continuum approximation is used in the envelope
function Fj. It was shown �25� that this approach can keep
many specific features of the discrete systems. By substitut-
ing Fj�X ,T� in Eq. �7� and equating the terms of equal ex-
ponents we get

�2

2�
F1TT − 2i�F1T − �2�Ka2 cos�qa�

2�
F1XX

− i��2aK sin�qa�
2�

F1X − �2Q��F1�2F1 + O��3� = 0

F0 = − 2��F1�2 + O��2�

F2 =
�F1

2

3 + � 16K

��0��
2sin4�qa

2
� + O��2� , �10�

where

Q =
��0��

2

2� �4�2 −
2�2

3 + � 16K

��0��
2sin4�qa

2
� − 3�� .

To obtain �10� we have used the relation

Fj,n+1eijqa + Fj,n−1e−ijqa − 2Fj,n

� cos�jqa�a2�2Fj

�x2 + 2ia sin�jqa�
�Fj

�x
− 4 sin2� jqa

2
�Fj .

�11�

New variables

Z = X − VgT, s = �T , �12�

transform �10� into the nonlinear Schrödinger equation

iF1s + PF1ZZ + Q�F1�2F1 = 0, �13�

where

Vg =
d�

dk
=

Ka

�
sin�qa� ,

P =
Ka2

2�
�cos�qa� −

K

�2 sin2�qa� . �14�

Therefore, the evolution of the planar wave amplitude �5� is
governed by the NLS equation. To study the localization of
energy in the PB model �4�, we should analyze the NLS
equation and look for solutions, for which at least a part of
the initial energy is stored in permanent localized structures.
That is, we will look for modulated waves with localized
amplitudes. This is the content of the next section.

IV. DESCRIPTION AND CONTROL OF N LOCALIZED
STRUCTURES IN NLS

In the previous section we have seen how modulated
waves obtained in the PB model can be described by the
NLS �13�. This equation is integrable by means of the IST
method �35� and has N-soliton solutions when

QP � 0. �15�

By changing the variables

	 = Qs, y =� Q

2P
Z , �16�

we can present the NLS in its standard form

iF1	 +
1

2
F1yy + �F1�2F1 = 0. �17�

In a class of functions that decrease at infinity the solution of
Eq. �17� is a sum of localized and quite robust solitary waves
and radiation �35�. Given the eigenvalue problem

�i
y
�1� + F1

*�y,0�
�2� = �
�1�,

− i
y
�2� + F1�y,0�
�1� = �
�2�,

�18�

the number of solitary waves is equal to the number of ei-
genvalues of the discrete spectrum, 	�n=�n+ in ,n
=1, . . .N ,n�0
. Their velocity is proportional to the real
part of the corresponding eigenvalue, Vn=−2�n, and their
amplitude and width are related to the imaginary part,
An=−2n. If the initial condition makes the reflection coef-
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ficient of the eigenvalue problem �18� to be null, then the
solution of �17� is formed only by solitons without any ra-
diation �35�. It means that there are solutions of Eq. �13� in
which the modulated amplitude F1�na , t� of Eq. �5� is local-
ized. Then, all the models described by the Hamiltonian �1�,
that meet �15�, can have solutions in the form of waves with
a localized modulated amplitude. It allows localized concen-
trations of energy.

If we have only one eigenvalue in the discrete spectrum
�=�+ i, the 1-soliton solution of �17� takes the form

F1�y,	� = − 2
ei�2�y−2��2−2��	−	0��

cosh	2�y − y0 − 2�t�

. �19�

After undoing the change of variables made in �9�, �10�, �12�,
�16�, we substitute �19� in �5� and obtain the localized solu-
tion of the DNA model �4� that corresponds to the 1-soliton
case �49�

un�t� = 2�A sech� �

Le
�na − Vet�cos�Qna − �t�

− 2��2A2sech2� �

Le
�na − Vet�

��1 −
1

3 +
16K

�w0��
2 sin4�qa

2
� cos�2�Qna − �t��� ,

�20�

where

ve = 2��2PQ, vc = �2PQ
�2 − 2

�
,

A =�ve
2 − 2vcve

2PQ
, Le =

2P
�ve − 2vcve

,

Ve = Vg + �ve, Q = q + �
ve

2P
, � = � + �� ve

2P
��Vg + �vc� .

�21�

However, to be sure that the localization of energy is a robust
result in the PB model, such localization should not appear
only when the appropriate N-soliton solution is introduced as
an initial condition in the NLS. From the IST point of view,
it means that if F1�y ,0� is not a reflectionless potential, the
solutions F1�y ,	� are not, strictly speaking, solitons because
the radiation is present in the system. The next question
arises: will permanent localized structures emerge in these
cases or not. Rigorous results �50� show that all solutions can
be decomposed into solitonlike solutions and radiation. In
other words, given a nonsoliton initial condition, the system
can group some of the energy in solitonlike structures while
the rest of the energy is spread in the form of radiation. Then,
after a transient time, we will again have a robust localiza-
tion of energy in the system.

We are interested in such initial conditions, F1�y ,0�, that
allow us to solve analytically the eigenvalue problem �18�

and, therefore, classify and control the localized structures
that emerge during the system evolution.

A. Square initial condition

Let us take the initial condition, F1�y ,0�, in the form

F1�y,0� = ��ei�, y � �c,c + g� ,

0, y � �c,c + g� ,
�22�

and substitute it in �18� which now can be written, for y
� �c ,c+g�, in the following way

��yy −
F1y�y,0�
F1�y,0�

�y + �2 + �F1�y,0��2 + i�
F1y�y,0�
F1�y,0� 
�2� = 0,


�1� = −
1

F1�y,0�
��
�2� + i
y

�2�� . �23�

The solution of �23� is


 = NII�−
1

F1�y,0�
�� + �y� ,

1
�Aeiy�� + Be−iy��, �24�

where �=�2+�2. For y�c and y�c+g we obtain


 = NI�1

0
�e−i�y, y � c ,


 = NIII�0

1
�ei�y, y � c + g . �25�

Imposing the continuity in y=c and y=c+g, we find the
following quantization condition for the eigenvalues:

� + ��

� − ��
e−2ig�� = 1. �26�

To satisfy this equation, it is necessary that

�n = in, �n = 0, n � 0. �27�

Then the eigenvalues are pure imaginary numbers and are
given by the roots of the transcendental equation

�n − S cos��n� = ��1

2
− n� , �28�

where

��2 − n
2 = � cos��n�, n = � sin��n� ,

S = �
−�

+�

dy�F1�y,0�� . �29�

The number of eigenvalues can be obtained from �28�

N = ent� S

�
+

1

2
 . �30�

It is interesting to mention that S must be greater than its
threshold value S0=� /2 to obtain localized solutions. For the
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values smaller than S0, all the initial energy will be spread in
the form of radiation without any localization of energy �57�.
On the other hand, the pure imaginary eigenvalues guarantee
that the centroid of energy of the system is of null velocity
and different N localized structures are not separated from
each other.

B. Exponential initial condition

Let the function F1�y ,0� be chosen as

F1�y,0� = ��e�y , y � y0,

0, y � y0,
�31�

where �=a+ ib.
For y�y0, we substitute it in �23� and change the variable

z= �
aeay and 
�2�=z���z�, where �= a+ib

2a . Then Eq. �23�
becomes

z2�zz + z�z + �z2 − �� − i
�

a
�2� = 0, �32�

with the boundary condition

lim
z→0

� = 0. �33�

The solution of �32� is the Bessel function

��z� = J��z�, � = � − i
�

a
. �34�

So for y�y0 we have


 = NI�−
a

F1�y,0�
�iz�z +

�

a
�

1
�z�J��z� .

For y�y0, the eigenvalue problem �18� is trivial and gives


 = NII�0

1
�zi

�
a .

If we require the solution to be continuous at y=y0, the
following equation

�J��z0� + z0J���z0� = 0,

must be valid, where

z0 = S = �
−�

+�

dy�F1�y,0�� =
�

a
eay0. �35�

Taking into account that the following recurrence relation

J�−1�z� =
�

z
J��z� + J���z� ,

is always fulfilled for the Bessel functions, we obtain the
quantization condition

J�−1�z0� = 0. �36�

For a given z0, it has the solutions �n n=1,2 ,3 , . . .. There-
fore, the discreet spectrum is the set

��n − 1 = −
1

2
+

n

a
+ i� b

2a
−

�n

a
�, J�n−1�z0� = 0� . �37�

The indices �n of the Bessel functions J�n
�z0� are real be-

cause z0 is real �51�. In our case it leads to �n�1 /2 and �n

= b
2 for all n. Therefore, all the eigenvalues have equal real

parts and then all the localized structures generated from the
initial conditions have equal velocities. Finally, the number
of the solitary waves and their amplitudes can be determined
by the roots of the equation

j�n,s − �n − �3s − 1� = z0 − �n − �3s − 1� , �38�

where j�n,s is the sth-zero of J�n
.

In this case we again have a threshold value S0�� to
create localized structures. It is interesting to point out that
for � /2�S�� the energy is spread without localization. On
the contrary, for these values of S a one solitonlike structure
emerges in case of the square initial condition.

C. Numerical simulations for NLS

All the results and predictions shown in Secs. IV A and
IV B involve the hypothesis that the radiation has a negli-
gible effect on the process of formation of solitonlike struc-
tures and on their dynamics. Therefore, it is necessary to
perform numerical simulations of the NLS �17� to check the
analytical results obtained above. These simulations have
been carried out by means of a standard fourth-order Runge-
Kutta scheme with free boundary conditions. In all the simu-
lations the relative change of the charge and energy is less
than 10−4 and 10−3, respectively �58�

In our simulations we have used different initial condi-
tions and compared the numerical results with the analytical
predictions discussed in previous sections. The conclusion of
our numerical simulation program is that the analytical re-
sults are completely valid even when a significant amount of
radiation is present in the system. In addition we show that if
the initial conditions are slightly changed in order to make
them smoother, the overall picture of the emergence of local-
ized structures is completely similar to that obtained in the
original cases. It means that our analytical results are suitable
to predict localization properties in the PB model �4�. In case
of square initial conditions �22� we show the existence of a
threshold value of S to create solitonlike solutions. For S
=0.3�� /2 �see Figs. 1�a� and 1�b�� we can observe that the
initial condition decays into radiation without the formation
of any localized structure, whereas for S�� /2 we have
found the creation of stable localized structures �see Figs.
1�c� and 1�d� for S=7.7, �N=2� and Figs. 1�e� and 1�f� for
S=14, �N=4��. In both cases the number of localized struc-
tures agrees well with the prediction of analytical formula
�30�. It is interesting to mention that the velocity of the lo-
calized structures is zero in all cases, as the solution of the
eigenvalue problem shows �27�. So, the structures do not
separate from each other giving rise to a complex dynamics
�see, i.e., Figs. 1�c� and 1�e��.

For the exponential initial condition �31� we check the
close relation between the number and properties of local-
ized structures and the value of S. Again we have a threshold
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value. For S=0.4531�� the initial condition decays into
radiation without the creation of any permanent localized
structure �see Figs. 2�b� and 3�a��. It can be determined
graphically �see Fig. 2�a�� that Eq. �38� has no root, therefore
the analytical results predict that a solitonlike structure will
not be formed, which is in total agreement with the simula-
tion evidence. For S�� solitonlike structures emerge. The
number of them is equal to the number of roots of �38�.
Namely, one soliton for S=3.3986 �see Figs. 2�c�, 2�d�, and
3�b�� and three solitons for S=10.53 �see Figs. 2�e�, 2�f�, and
3�c��. We have measured the velocity of the localized struc-

tures and obtained V=0.78±0.01 in the case of N=1 �see
Fig. 2�d�� and V1=0.7993±0.0007, V2=0.793±0.002, V3
=0.7793±0.0015 for N=3 �see Fig. 2�f��. The velocity pre-
dicted by the analytical results is Vn=0.7854 in all the cases.
We see that for all the solitonlike structures the difference
between the analytical and numerical velocities is smaller
than 2 percent.Therefore, it is correct, in first approximation,
to neglect the contribution of the radiation to the dynamics
and formation of the solitonlike structures.

We have found that the numerical data agree well with the
analytical results in the cases of the square and exponential

FIG. 1. The complete dynamics of the solution of the NLS �17�, �F1�y ,	��, in the case of square initial conditions �22� is presented in the
left panels. In panel �a�: �=0.02, g=15, �=� /4, and S=0.3 �N=0�. In panel �c�: �=0.22, g=35, �=� /4, and S=7.7 �N=2�. In panel �e�:
�=0.4, g=35, �=� /4, and S=14 �N=4�. In all cases black color corresponds to �F1 � =0, and white to �F1 � =0.025, 0.7, and 2.0 for the panels
�a�, �c�, and �e�, respectively. �F1�y ,	�� is presented in the right panels for square �22� �black curves� and squarelike �39� �gray dashed curves�
initial conditions. In panel �b�: 	=0, 70, and 120. In panel �d�: 	=0 and 49.75. In panel �f�: 	=0 and 14. In all cases the parameters used are
the same as in their correspondent left panel with h=1 for squarelike initial conditions �39�.
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initial conditions. However, in the theory presented in previ-
ous sections, the function F1�y ,0� must be smooth because
we look for a slowly varying amplitude in space and time.
We propose new initial conditions similar to the square one
�22�

F1�y,0� =
�

2
�tanh� y − c

h
� − tanh� y − �c + g�

h
��ei�,

�39�

and to the exponential one �31�

F1�y,0� = ��e�y , y � p0,

�0e−�2�y − p0�2+iby , y � p0,
�40�

where

p0 = y0 −
1

a
ln�a��

2�
+ 1�, �0 = �eap0,

to check whether the overall dynamics of the system remains
unchanged if the initial conditions are smoother.

FIG. 2. The left panels show the graphical solution of Eq. �38�. One may see the intersection of the functions j�n,s−�n− �3s−1� and
z0−�n− �3s−1� for s=1 �solid line�, s=2 �dashed line�, s=3 �point line�, and s=4 �point-dashed line�. Panel �a�: S=z0=0.4531, there is no
root. For panel �c�, S=z0=3.3986, there is one root for s=1. For panel �e�, S=z0=10.53, there are three roots for s=1, s=2, and s=3. The
right panels present the complete dynamics of the solution of the NLS �17�, �F1�y ,	��, for exponential initial conditions �31�. Panel �b�: b
=� /4, �=2�10−17, a=0.07, and S=0.4531 �N=0�. Panel �d�: b=� /4, �=1.5�10−16, a=0.07, and S=3.3986 �N=1�. Panel �f�: b=� /4,
�=4.65�10−16, a=0.07, and S=10.53 �N=3�. In all these cases black corresponds to �F1 � =0, and white to �F1 � =0.035, 0.25, and 1.2 for the
panels �b�, �d�, and �f�, respectively.
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Given the parameters 	� ,c ,g ,� ,a ,b ,y0
, the new initial
conditions �39� and �40� have the same value of S as the
original ones. In case of the square and exponential-like ini-
tial conditions �39�, �40�, we have performed numerical
simulations with �=h=1 and the same parameters used in
previous ones. If we compare the solutions, for all the cases,
with the solutions obtained when �22� and �31� are used as
initial conditions, we find them to be qualitatively identical.
We obtain the same number of solitary structures and the
same patters of evolution �see Figs. 1�b�, 1�d�, and 1�f� in
case of the square�, and �Figs. 3�a�–3�c� for the case of the
exponential�. Thus, we can conclude that it is reasonable to
use the results obtained in previous sections to study the
localization of energy in the PB model due to the negligible
effect of the radiation and the robustness of the creation of
localized structures when the initial conditions are slightly
changed.

V. DIRECT NUMERICAL SIMULATIONS
IN THE PB MODEL

To study the creation and stability of localized structures
in the PB model, it is not enough to formulate the problem in
terms of the NLS �17� that governs the dynamics of the am-
plitude of modulated waves �5�. The transformation from the
equation of motion of the bases �4� to the NLS involves
some approximations. So, the results obtained in the frame-
work of the NLS must be compared with direct numerical
simulations in the PB model with realistic values of
parameters.

In all simulations we use a fourth-order Runge-Kutta
scheme. We choose absorbing boundary conditions to avoid
an artificial large amount of radiation that can affect the cre-
ation process and the dynamics of the localized structures.
Under these boundary conditions the total energy is not con-
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FIG. 3. The panels present �F1�y ,	�� for exponential �31� �black
curves� and exponential-like �40� �gray dashed curves� initial con-
ditions. Panel �a� corresponds to the parameters b=� /4, �=2
�10−17, a=0.07, S=0.4531, and �=1 �N=0� for 	=0, 49.8, and
100. Panel �b� corresponds to the parameters b=� /4, �=1.5
�10−16, a=0.07, S=3.3986, and �=1 �N=1� for 	=0 and 60. Panel
�c� corresponds to the parameters b=� /4, �=4.65�10−16, a
=0.07, S=10.53, �=1, �N=3� for 	=0 and 100.
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FIG. 4. The three panels show direct numerical simulations of
the PB model where the initial condition �20� is used, which corre-
sponds to the pure 1 soliton. Panels �a� and �b� present the dynamics
of un�t� and En�t� for ve=3, vc=1, q=0.01 Å−1, and �=0.05, respec-
tively. For this set of parameters 	p=87.20. In panel �b� black cor-
responds to En=0 and white to En=9�10−3. Panel �c�, using the
same parameters as in the previous panels, presents un versus n at
the time instant t=100, of the order of 	p �the solid black curve
corresponds to the analytical solution �20�, and the dashed black
curve to the numerical simulation; both curves can not be distin-
quished by the eyes �, and in t=1000, much greater than 	p �the
solid gray curve corresponds to the analytical solution �20�, and the
gray dashed curve to the numerical simulation�.
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served in the system, but in all the simulations, the relative
change of the energy is less than 10−6 before the radiation
reaches the boundaries of the system.

It has been shown �25� that the dynamics in the PB model
depends drastically on the choice of the parameter values
used in the model. We choose realistic parameters for a chain

of guanine-cytosine, a=3.4 Å, D=0.35 eV, d=4.45 Å−1, K̃
=0.104 eV /Å2, m=300 a.m.u. �43�, leading to K=0.15. In
our simulations we use initial conditions in the form of a
modulated planar wave �5� with a wave vector q and fre-
quency � related by the dispersion equation �11�. The initial
amplitude form, Fn, corresponds to the 1-soliton �20�,
squarelike �39�, and exponential-like �40� shape after the
changes of variables �9�, �12�, and �16�. We vary the param-
eters of these functions in order to change the value of S and
compare the localization of energy in the DNA model with
the analytical results obtained in previous sections for the
evolution of the initial amplitude in the framework of the
NLS. After numerical simulations we conclude that the num-
ber and properties of the emerged solitonlike structures agree
well with the predictions of our analytical calculations. Even
in cases where no localized solutions are formed, the energy
spreading is so slow that these structures have physical entity
due to their long lifetime. Therefore a strong localization of
energy in the system is possible when we do not have an
initial amplitude that corresponds to a pure N-soliton case. It
implies that in the PB model the localization of energy from
localized initial conditions is a very robust phenomena.

When the initial condition �20�, which corresponds to the
exact 1-soliton solution of NLS �19�, is used, we can observe
that the energy is well localized and travels with constant
velocity �see Figs. 4�a� and 4�b��. It can be seen that for a
time period of the order of the propagation time scale of the
solution, 	p= ��Ve /Le�−1, the agreement between the numeri-
cal simulation and the analytical formula is very accurate
�see solid and dashed black lines in Fig. 4�c��, in spite of the
approximations that we have performed to obtain the analyti-
cal formula �19�. For times much greater than the propaga-
tion time scale, small tails start to appear in the solution
obtained by means of the numerical simulation due to the
nonintegrability of the PB model. This makes the difference
between the analytical and numerical solutions larger �see
solid and dashed gray lines in Fig. 4�c��.

The solution that corresponds to the exact 1-soliton has
been widely studied in the context of the PB model �15�. Our
aim is to show that energy localization can arise from differ-
ent initial conditions. This means that the system responds to
many different initial states in a similar way and, therefore,
the localization of energy is a robust process in the PB
model. In the cases of the square and exponential-like initial
conditions, we have chosen exactly the same parameters that
were used in the previous section. This allows us to directly
compare the results obtained in the frameworks of the DNA
model and the NLS. For both square �39� and exponential-
like initial conditions �40� we observe again that if S�S0,
the initial energy spreads without the formation of permanent
localized structures �see Figs. 5�a� and 6�a��. Whereas for S

(b)

(a) (c)

(d)

FIG. 5. The panels show direct numerical simulations of the PB model. For all the panels the square-like function �39� was used as initial
condition for the amplitude of the planar waves �5� after the changes of variables �9�, �12�, and �16�. In panels �a�, �b�, and �c� the dynamics
of En�t� is represented. In panel �a�: c=100, g=15, h=1, �=0.02, �=� /4, q=0.01 Å−1, �=0.05, and S=0.3 �N=0�. In panel �b�: c=100,
g=35, h=1, �=0.22, �=� /4, q=0.01 Å−1, �=0.05, and S=7.7 �N=2�. In panel �c�: c=100, g=35, h=1, �=0.4, �=� /4, q=0.01 Å−1, �
=0.05, and S=14 �N=4�. In all these cases black corresponds to E=0, and white to E=6.5�10−6, 1.7�10−3, and 1.7�10−2 for the panels
�a�, �b�, and �c�, respectively. Panel �d� presents the dynamics of un�t� for the same parameters used in �c�.
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�S0 the localized structures are formed and stabilized in a
perfect agreement with the predictions of the analytical re-
sults �see Figs. 5�b�, 5�c�, 6�b�, and 6�c��. In these figures it
can also be observed that the patterns of evolution of the
energy in the PB model are very similar to those which were
obtained in case of the NLS equation. This fact shows the
validity of the semidiscrete approximation. So, it can be seen
that localized stable solutions arise from different localized
initial conditions.

To give a quantitative description of the energy localiza-
tion in our simulations, we measure the magnitude

L�t� = �
n

En, �n� − ���n2�0�� � n � �n� + ���n2�0�� ,

�41�

where

�n� =

�
n=1

N

nEn

�
n=1

N

En

, ��n2� =

�
n=1

N

�n − �n��2En

�
n=1

N

En

, �42�

En being the energy that corresponds to the system �4�.
The function L�t� informs us about the energy that is lo-

calized at an interval around the centroid of energy of the
system. The length of this interval is related to the width of

the initial distribution of energy. When the initial conditions
meet S�S0, the evolution of L�t� �see Figs. 7�a� and 7�b��
shows that after t=10000, �2.11�10−11 s�, a large amount of
energy is concentrated in a region compared in size with the
interval of the initial localization, as we expected. In all the
cases this amount of energy is greater than 80 percent of the
energy that was initially in this interval. It must be pointed
out that the localization of energy during a time period of
2.11�10−11 s, which is much greater than the typical time
scale of the transversal movements in DNA �10−14 s�, allows
to provide physical sense to these localized structures in spite
of the localization of energy showing a time dependence that
may lead to a delocalization at later times. When S�S0, no
permanent localized structures are created but the energy loss
is very slow �see black dashed lines in Figs. 7�a� and 7�b��.
After t=10000, �2.11�10−11 s�, more than 40 percent of the
energy is still concentrated near the centroid of energy.
Therefore, even if the localizations of energy are not perma-
nent, they have physical meaning due to their long lifetimes
in comparison with the time scale of the transversal move-
ments of the bases. The cases of the exponential-like initial
conditions for which �n�0�=27.68 �b.p.� �see Figs.
6�a�–6�c�� are of special relevance. The length �n�0� is very
similar to the size of the transcription bubble �52–54� This
fact implies that the energy can remain localized for a very
large period of time if it is deposited in a region of the length
of the transcription bubble.

(b)

(a) (c)

(d)

FIG. 6. The panels show direct numerical simulations of the PB model. For the right panels the exponential-like function �40� was used
as the initial condition for the amplitude of the planar waves �5� after the changes of variables �9�, �12�, and �16�. In panel �a�, �b�, and �c�
the dynamics of En�t� is presented. Panel �a�: a=0.07, b=� /4, �=2�10−17, S=0.4531, �N=0�, �=1, q=0.01 Å−1, and �=0.05. Panel �b�:
a=0.07, b=� /4, �=1.5�10−16, S=3.3986, �N=1�, �=1, q=0.01 Å−1, and �=0.05. Panel �c� for a=0.07, b=� /4, �=4.65�10−16, S
=10.53, �N=3�, �=1, q=0.01 Å−1, and �=0.05. In all these cases black corresponds to E=0, and white to E=1�10−5, 5.5�10−4, and
1.7�10−3 for the panels �a�, �b�, and �c�, respectively. Panel �d� presents the dynamics of un�t� for the same parameters used in �c�.
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We can conclude that not only the localized solutions that
arise from a pure N-soliton initial conditions are possible in
the PB model. It is shown that localized structures, whose
numbers and properties are controlled by the parameter S,
can be created from different initial conditions in a good
agreement with the analytical and numerical results obtained
for the NLS. Moreover, the characteristic time of energy
spreading is much greater than the time scale of the transver-
sal movements of the bases even in case of initial conditions
with S�S0 from which we do not expect localized
structures.

VI. CONCLUSIONS

In the framework of the PB model we have explored the
process of localization of energy from different initial local-
ized distributions of energy. We have proposed a solution in
the form of modulated planar waves �5�. Also, using the
so-called semidiscrete approximation �33�, we have shown
that the NLS governs the evolution of the amplitude of these
waves �17�. In previous works �1,15,32–34� the amplitude
described by means of the 1-soliton solution was substituted
in the planar waves solution. The dynamics of this structure
was studied paying special attention to its properties of lo-
calization. In the present paper we analyze, by means of a
method based on the IST �35�, the NLS that governs the

amplitude. Using initial conditions different from pure
N-soliton solutions, we have obtained analytical results
which describe and control the number, amplitude, and ve-
locity of the solitonlike structures that emerge from the ini-
tial conditions. Among these results, we must emphasize the
existence of control parameter S, which is related to the area
of the modulus of the initial amplitude, that rules the exis-
tence of solitonlike structures. For each kind of initial con-
dition, a threshold value S0 exists. If S�S0, all the energy is
spread without the formation of permanent structures. These
analytical results have been checked through numerical
simulation of the NLS obtaining a very good agreement be-
tween them, even when the initial conditions were slightly
changed and there was a large amount of radiation in the
system.

The study of the NLS is not enough to analyze the local-
ization of energy in the PB model. The approximations car-
ried out to obtain the equation of evolution of the amplitude
oblige to check the results obtained in the framework of the
NLS by means of direct numerical simulations of the PB
model �4� with realistic values of the parameters. From the
initial conditions in the form of planar waves with the am-
plitudes given by the functions studied in the NLS, we have
observed that localized structures were created and their
number and properties were controlled by the parameter S in
full agreement with the analytical and numerical results ob-
tained for the NLS. In case of initial conditions with S�S0,
more than 80 percent of the energy has been found to remain
concentrated in a region comparable with the initial localiza-
tion after a time much longer than the typical time scale of
the transversal movement of the bases in DNA. When S
�S0, permanent localized structures do not emerge. How-
ever, the rhythm of energy loss is so slow that the localiza-
tion of energy has physical meaning due to its long lifetime
in comparison with the time scale of the transversal move-
ments of the bases. So, we can conclude that in the PB model
with realistic DNA parameters, N permanent localized struc-
tures can arise from initial conditions that are not related to
the N-soliton solution of the NLS. Even in case of initial
states, for which localized structures do not appear, the time
scale of the energy spreading is much greater than the typical
scales of movement in the transversal dynamics. Therefore,
the localization of energy in the PB model, in absence of
thermal fluctuations, is quite a robust process where no spe-
cific initial conditions are required to achieve it.

It is important to point out that applications of these re-
sults in biology must be done with prudence. From a theo-
retical point of view, it is known that the stability and life-
time of localized solutions are very sensitive to such
properties of the thermal fluctuations as viscosity and tem-
perature �55,56�.The DNA is in contact with a thermal bath
in the cell. Therefore, the friction and thermal forces play an
important role in its internal dynamics. So, it is necessary to
explore the role of the thermal noise in the process of forma-
tion of localized structures to study the creation and dynam-
ics of N localized structures in the PB model in a cell envi-
ronment. On the other hand, such basic complex DNA
functional processes as replication and transcription are con-
trolled by means of the actions of proteins �44�. Therefore, to
understand the DNA functioning, it is not enough to take into
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FIG. 7. Evolution of the function L�t� /L�0�. In panel �a� the
solid light gray curve corresponds to the solution related with the
pure 1-soliton case �20�. The others correspond to the case of
squarelike initial conditions �39� after the changes of variables �9�,
�12�, and �16�. The dashed black curve corresponds to the case of
S=0.3 �N=0�, the solid dark gray curve to S=7.7�N=2�, and the
solid black curve to S=14�N=4�. In panel �b� the solid light gray
curve corresponds to the solution related with the pure 1-soliton
case �20�. The others correspond to the case of exponential-like
initial conditions �39� after the changes of variables �9�, �12�, and
�16�. The dashed black curve corresponds to the case of S
=0.4531 �N=0�, the solid dark gray curve to S=3.3986 �N=1�, and
the solid black curve to S=10.53 �N=3�.
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account only the internal interactions. It is necessary to study
the interplay between the internal motion �e.g., internal os-
cillations� in the DNA and the proteins involved in the
processes.
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